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3.1 SOLVE LINEAR SYSTEMS BY GRAPHING

• System of equations

• More than one equation that share the same solution.

• Often they involve more than one variable.

• In order to solve them, you need as many equations as there are 
variables.

•
2𝑥 + 3𝑦 = 6
3𝑥 − 4𝑦 = 5
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3.1 SOLVE LINEAR SYSTEMS BY GRAPHING

• Solutions to systems

• An ordered pair that works in both equations.

• If the ordered pair works in both equations, then both graphs have 
to go through that point.

• Solutions are where the graphs cross.
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3.1 SOLVE LINEAR SYSTEMS BY GRAPHING

• Solve by graphing

• Graph both equations on the same graph.

• Where they cross is the solution.
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3.1 SOLVE LINEAR SYSTEMS BY GRAPHING

•Classifying Solutions

• Many Solutions → consistent 
(has a solution), dependant

• One solution → consistent, 
independent

• No solution → inconsistent
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3.1 SOLVE LINEAR SYSTEMS BY GRAPHING

• Solve by graphing.  Classify as consistent and independent, 
consistent and dependent, or inconsistent.

•
3𝑥 + 2𝑦 = −4
𝑥 + 3𝑦 = 1

• Solve the equations for y.
3𝑥 + 2𝑦 = −4
2𝑦 = −3𝑥 − 4

𝑦 = −
3

2
𝑥 − 2

• The y-intercept is -2 and the slope is −
3

2
.

𝑥 + 3𝑦 = 1
3𝑦 = −𝑥 + 1

𝑦 = −
1

3
𝑥 +

1

3

• The y-intercept is 
1

3
and the slope is −

1

3
.

• Where the lines intersect is the solution. 

• (-2, 1); Consistent and independent
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3.1 SOLVE LINEAR SYSTEMS BY GRAPHING

• Solve by graphing.  Classify as consistent and independent, 
consistent and dependent, or inconsistent.

• 3x – 2y = 10

• 3x – 2y = 2

• Solve both equations for y.
3𝑥 − 2𝑦 = 10

−2𝑦 = −3𝑥 + 10

𝑦 =
3

2
𝑥 − 5

• The y-intercept is -5 and the slope is 
3

2
.

3𝑥 − 2𝑦 = 2
−2𝑦 = −3𝑥 + 2

𝑦 =
3

2
𝑥 − 1

• The y-intercept is -1 and the slope is 
3

2
.

• Where the lines intersect is the solution.

• Since they are parallel there is no solution. Inconsistent
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3.1 SOLVE LINEAR SYSTEMS BY GRAPHING

• Solve by graphing.  Classify as consistent and independent, 
consistent and dependent, or inconsistent.

• 2x +   y = 1

• -4x – 2y = -2

• Solve both equations for y.
2𝑥 + 𝑦 = 1
𝑦 = −2𝑥 + 1

• The y-intercept is 1 and the slope is −2.
−4𝑥 − 2𝑦 = −2
−2𝑦 = 4𝑥 − 2
𝑦 = −2𝑥 + 1

• The y-intercept is 1 and the slope is −2.

• Where the lines intersect is the solution.

• Since they are the same line there are infinitely many 
solutions. Consistent and dependent
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3.1 SOLVE LINEAR SYSTEMS BY GRAPHING

• A soccer league offers two options for 
membership plans.  A) $40 initial fee and 
$5 for each game played.  B) $10 for each 
game played.  How many games must you 
play for both plans to be the same?

• Write an equation for each plan.

• Plan A: Cost is $40 plus $5 for each game. 
𝑦 = 5𝑥 + 40

• Plan B: Cost is $10 for each game. 𝑦 = 10𝑥

• Where the lines intersect is the solution.
(8, 80)

• You must play 8 games for both plans to be 
the same cost.
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HOMEWORK QUIZ

• 3.1 Homework Quiz
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3.2 SOLVE LINEAR SYSTEMS ALGEBRAICALLY

• Graphing to solve systems of equations has some problems.  

• Can you guess some?  

• Inaccurate

• Sometimes hard to graph
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3.2 SOLVE LINEAR SYSTEMS ALGEBRAICALLY

• Substitution

1. Solve one equation for one variable

2. Use that expression to replace that variable in the other 
equation

3. Solve the new equation

4. Substitute back into the first equation

5. Solve for the second variable

15



3.2 SOLVE LINEAR SYSTEMS ALGEBRAICALLY

𝑦 = 𝑥 + 2
2𝑥 + 𝑦 = 8

2𝑥 + 𝑦 = 8
3𝑥 + 2 = 8
3𝑥 = 6
𝑥 = 2

𝑦 = 𝑥 + 2
𝑦 = 4

(2,4)

𝑥 + 2

2
y is the same thing 

as x + 2
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3.2 SOLVE LINEAR SYSTEMS ALGEBRAICALLY

3𝑥 + 2𝑦 = 8
𝑥 + 4𝑦 = −4

𝑥 = −4𝑦 − 4

3 𝑥 + 2𝑦 = 8
−12𝑦 − 12 + 2𝑦 = 8
−10𝑦 − 12 = 8
−10𝑦 = 20
𝑦 = −2

𝑥 = −4 𝑦 − 4
𝑥 = 4

(4, −2)
(−4𝑦 − 4)

(−2)
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3.2 SOLVE LINEAR SYSTEMS ALGEBRAICALLY

• Elimination

1. Line up the equations into columns

2. Multiply one or both equations by numbers so that one 
variable has the same coefficient, but opposite sign

3. Add the equations

4. Solve the resulting equation

5. Substitute the value into one original equation and solve
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3.2 SOLVE LINEAR SYSTEMS ALGEBRAICALLY

2𝑥 − 3𝑦 = −14
3𝑥 − 𝑦 = −7

2𝑥 − 3𝑦 = −14
−9𝑥 + 3𝑦 = 21
−7𝑥 = 7

𝑥 = −1

2 𝑥 − 3𝑦 = −14
−2 − 3𝑦 = −14
−3𝑦 = −12

𝑦 = 4

(−1,4)

−3 3𝑥 − 𝑦 = −7(−3)
(−1)

Add

Substitute into one of the original equations.
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3.2 SOLVE LINEAR SYSTEMS ALGEBRAICALLY

3𝑥 + 11𝑦 = 4
−2𝑥 − 6𝑦 = 0

6𝑥 + 22𝑦 = 8
−6𝑥 − 18𝑦 = 0

4𝑦 = 8

𝑦 = 2

−2𝑥 − 6 𝑦 = 0
−2𝑥 − 12 = 0
−2𝑥 = 12
𝑥 = −6

(−6, 2)

2 3𝑥 + 11𝑦 = 4 2

3 −2𝑥 − 6𝑦 = 0 3
(2)

Add

Substitute into one of the original equations.

20



3.2 SOLVE LINEAR SYSTEMS ALGEBRAICALLY

• Number of Solutions

• If both variables disappear after you substitute or combine and

• You get a true statement like 2 = 2 → infinite solutions

• You get a false statement like 2 = 5 → no solution
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3.2 SOLVE LINEAR SYSTEMS ALGEBRAICALLY

• Summary of Solving Techniques

• When to graph?

• To get general picture and estimate

• When to use substitution?

• When one of the coefficients is 1

• When to use elimination?

• When none of the coefficients is 1
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HOMEWORK QUIZ

• 3.2 Homework Quiz
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3.3 GRAPH SYSTEMS OF LINEAR 
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3.3 GRAPH SYSTEMS OF LINEAR INEQUALITIES

• To solve systems of inequalities, graph them all on one graph.

• Solution is where all graphs overlap

• Graphing linear inequalities was taught in lesson 2.8
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3.3 GRAPH SYSTEMS OF LINEAR INEQUALITIES

• Solve the system of 
inequalities

𝑥 ≥ 2
𝑥 + 𝑦 < 3

• Graph both inequalities.

• Where the shaded areas 
overlap is the solution.
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3.3 GRAPH SYSTEMS OF LINEAR INEQUALITIES

• Solve the system of inequalities

𝑦 < −
4𝑥

5
− 4

𝑦 > −
4𝑥

5
+ 2

• Graph both inequalities.

• Where the shaded areas 
overlap is the solution.

• No overlap means No Solution.
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3.3 GRAPH SYSTEMS OF LINEAR INEQUALITIES

• Solve the system of

𝑦 ≤ 3
0 ≤ 𝑥 ≤ 5
𝑥 > −𝑦

• Graph all inequalities.
𝑥 > −𝑦
−𝑥 < 𝑦
𝑦 > −𝑥

• Where the shaded areas 
overlap is the solution.
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HOMEWORK QUIZ

• 3.3 Homework Quiz
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3.4 SOLVE SYSTEMS OF LINEAR 
EQUATIONS IN THREE VARIABLES

Larson Algebra 2

(2011)
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3.4 SOLVE SYSTEMS OF LINEAR EQUATIONS IN THREE 
VARIABLES

• We have now worked with 2 variables and 2 dimensions, but sometimes 
there are more

• Linear equation in 3 variables graphs a plane 
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3.4 SOLVE SYSTEMS OF LINEAR EQUATIONS IN THREE 
VARIABLES

• Solution to system in 3 variables

• Ordered triple (x, y, z)

• Example: Is (2, -4, 1) a solution of

•

𝑥 + 3𝑦 − 𝑧 = −11
2𝑥 + 𝑦 + 𝑧 = 1
5𝑥 − 2𝑦 + 3𝑧 = 21

• Plug it in.
𝑥 + 3𝑦 − 𝑧 = −11

2 + 3 −4 − 1 = −11
−11 = −11✔
2𝑥 + 𝑦 + 𝑧 = 1

2 2 + −4 + 1 = 1
1 = 1✔

5𝑥 − 2𝑦 + 3𝑧 = 21
5 2 − 2 −4 + 3 1 = 21

21 = 21✔

• Yes
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3.4 SOLVE SYSTEMS OF LINEAR EQUATIONS IN THREE 
VARIABLES

One Solution
Infinitely Many 

Solutions

No Solutions
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3.4 SOLVE SYSTEMS OF LINEAR EQUATIONS IN THREE 
VARIABLES

Elimination Method

• Like two variables, you just do it more than once.

1. Combine first and second to eliminate a variable

2. Combine second and third to eliminate the same variable as before

3. Combine these new equations to find the two variables

4. Substitute those two variables into one of the original equations to get 
the third variable

• If you get a false statement like 8=0 → no solution

• If you get an identity like 0=0 → infinitely many solutions
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3.4 SOLVE SYSTEMS OF LINEAR EQUATIONS IN THREE 
VARIABLES

2𝑥 + 3𝑦 + 7𝑧 = −3
𝑥 − 6𝑦 + 𝑧 = −4

−𝑥 − 3𝑦 + 8𝑧 = 1

• Combine first two equations (multiply second by -2 to 
eliminate x):

2𝑥 + 3𝑦 + 7𝑧 = −3
−2𝑥 + 12𝑦 − 2𝑧 = 8

​15𝑦 + 5𝑧 = 5
3𝑦 + 𝑧 = 1

• Combine last two equation (just add to also eliminate x):
𝑥 − 6𝑦 + 𝑧 = −4

−𝑥 − 3𝑦 + 8𝑧 = 1
− 9𝑦 + 9𝑧 = −3

−3𝑦 + 3𝑧 = −1

• Combine the combinations (just add to eliminate y):
3𝑦 + 𝑧 = 1

−3𝑦 + 3𝑧 = −1
4𝑧 = 0

𝑧 = 0

• Substitute  into one of the combinations
3𝑦 + 𝑧 = 1
3𝑦 + 0 = 1

𝒚 =
𝟏

𝟑

• Substitute into one of the original equations
𝑥 − 6𝑦 + 𝑧 = −4

𝑥 − 6
1

3
+ 0 = −4

𝑥 − 2 = −4
𝒙 = −𝟐

• −𝟐,
𝟏

𝟑
, 𝟎

-2(                         ) ×-2

Divide by 5

Divide by 3
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3.4 SOLVE SYSTEMS OF LINEAR EQUATIONS IN THREE 
VARIABLES

−𝑥 + 2𝑦 + 𝑧 = 3
2𝑥 + 2𝑦 + 𝑧 = 5
4𝑥 + 4𝑦 + 2𝑧 = 6

• Combine first two equations (multiply first by 2 to eliminate x):
−2𝑥 + 4𝑦 + 2𝑧 = 6
2𝑥 + 2𝑦 + 𝑧 = 5

6𝑦 + 3𝑧 = 11

• Combine last two equation (multiply second by -2 to also eliminate x):
−4𝑥 − 4𝑦 − 2𝑧 = −10
4𝑥 + 4𝑦 + 2𝑧 = 6

0 = −4
• 0 = -4 is a false statement, so there is no solution.

2(                            )       × 2

-2(                           )       × -2
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3.4 SOLVE SYSTEMS OF LINEAR EQUATIONS IN THREE 
VARIABLES

• Substitution

1. Solve one of the equations for one variable

2. Substitute that into both of the other equations

3. Solve the resulting system of two variables
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3.4 SOLVE SYSTEMS OF LINEAR EQUATIONS IN THREE 
VARIABLES

𝑥 + 𝑦 + 𝑧 = 6
𝑥 − 𝑦 + 𝑧 = 6
4𝑥 + 𝑦 + 4𝑧 = 24

• Solve 1st for y → 𝑦 = −𝑥 − 𝑧 + 6

• Substitute this into 2nd

𝑥 − −𝑥 − 𝑧 + 6 + 𝑧 = 6

2𝑥 + 2𝑧 − 6 = 6

2𝑥 + 2𝑧 = 12

𝑥 + 𝑧 = 6

• Substitute the solved equation into the 3rd

4𝑥 + −𝑥 − 𝑧 + 6 + 4𝑧 = 24

3𝑥 + 3𝑧 + 6 = 24

3𝑥 + 3𝑧 = 18

𝑥 + 𝑧 = 6

• Write the new system
𝑥 + 𝑧 = 6
𝑥 + 𝑧 = 6

• Solve the 1st for x → 𝑥 = 6 − 𝑧

• Substitute into 2nd and solve 
6 − 𝑧 + 𝑧 = 6

6 = 6

• This is true, so many solutions.

• Write answer by letting 
𝒛 = 𝒂

• Substitute into 𝑥 + 𝑧 = 6 and find x: 
𝒙 = 𝟔 − 𝒂

• Substitute back into first and find y: 
𝑦 = −𝑥 − 𝑧 + 6

𝑦 = − 6 − 𝑎 − 𝑎 + 6
𝒚 = 𝟎

• Solution: 𝟔 − 𝒂, 𝟎, 𝒂
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3.4 SOLVE SYSTEMS OF LINEAR EQUATIONS IN THREE 
VARIABLES

• If there are infinitely many solutions

• Let x = a

• Solve for y in terms of a

• Substitute those to find z in terms of a

• Sample answer (a, a + 4, 2a)
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HOMEWORK QUIZ

• 3.4 Homework Quiz
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3.5 PERFORM BASIC MATRIX 
OPERATIONS

Larson Algebra 2

(2011)
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3.5 PERFORM BASIC MATRIX OPERATIONS

• Matrices are simply a way to organize data.  

• For example, a computer desktop wallpaper (bitmap) is a matrix.  
Each element tells what color pixel goes in that spot.
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3.5 PERFORM BASIC MATRIX OPERATIONS

• A matrix is a rectangular arrangement of things (variables or numbers in 
math)

•
2 −1 5 a
2 𝑦 6 𝑏
3 14 𝑥 𝑐

• Dimensions

• Rows by columns

• 3 × 4 for the above matrix
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3.5 PERFORM BASIC MATRIX OPERATIONS

• In order for two matrices to be 
equal, they must be the same 
dimensions and corresponding 
elements must be the same

•
1 3
2 4

=
1 3
2 4

• Find the variables 
2 𝑦 + 1
𝑥/3 4

=
𝑤 −4
5 𝑧 − 4

• 2 = 𝑤

• 𝑦 + 1 = −4 → 𝑦 = −5

•
𝑥

3
= 5 → 𝑥 = 15

• 4 = 𝑧 − 4 → 𝑧 = 8
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3.5 PERFORM BASIC MATRIX OPERATIONS

• Adding and Subtracting

• You can only add and subtract matrices that are the same dimensions

• When you add or subtract, add the corresponding elements.

•
1 2
−5 4

+
−2 5
4 −3

• =
1 + −2 2 + 5
−5 + 4 4 + −3

• =
−1 7
−1 1
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3.5 PERFORM BASIC MATRIX OPERATIONS

• 2 −3 − 3 4 + [1 0]

•= 2 − 3 + 1 −3 − 4 + 0

•= 0 −7

•
1 4
2 3

−
0 3 1
2 5 2

• Can’t add because the matrices 
are different dimensions
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3.5 PERFORM BASIC MATRIX OPERATIONS

• Scalar Multiplication

• Multiply each element by the scalar

• Distribute

• 3
5 −2 7
−3 8 4

•=
3 5 3 −2 3 7
3 −3 3 8 3 4

•=
15 −6 21
−9 24 12
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3.5 PERFORM BASIC MATRIX OPERATIONS

• The National Weather Service keeps track of weather.

• What is meaning of the first matrix + second matrix?

• The total number of days of each type for each city.

• Use matrix operations to find the total weather stats of each city

• =
13 + 14 18 + 15
16 + 18 13 + 18
12 + 2 19 + 8

=
27 33
34 31
14 27

June 2014 Benton 
Harbor

South Bend

Precip Days 13 18

Clear Days 16 13

Ab Norm T 12 19

July 2014 Benton 
Harbor

South Bend

Precip Days 14 15

Clear Days 18 18

Ab Norm T 2 8

 
 
 
  

 
 
 
  

*Precip Days = Days with precipitation
Clear Days = Days with no clouds
Ab Norm T = Days with Above Normal Temperature
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HOMEWORK QUIZ

• 3.5 Homework Quiz
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3.6 MULTIPLY MATRICES

Larson Algebra 2
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3.6 MULTIPLY MATRICES

• Yesterday we learned all about matrices and how to add and 
subtract them.  But how do you multiply or divide matrices?  

• Today we will multiply matrices.

• Later we will find out that you can’t divide by a matrix.
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3.6 MULTIPLY MATRICES

• Matrix multiplication can only happen if the number of columns of 
the first matrix is the same as the number of rows on the second 
matrix.

• You can multiply a 3×5 with a 5×2.  

• 3×5  5×2 → 3×2 will be the dimensions of the answer

• Because of this order does matter! 
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1 2
0 −3

⋅
−2 1
4 3

3.6 MULTIPLY MATRICES

1 ⋅ −2൥ ቉
0 ⋅ −2 + −3 ⋅ 4

൥ ቉6
−12

+2 ⋅ 4 1 ⋅ 1 + 2 ⋅ 3
0 ⋅ 1 + −3 ⋅ 3

7
−9

• Pick a row in the 1st matrix and a 
column in the 2nd matrix. 

• Multiply the first numbers.
• Plus.
• Multiply the second numbers.

• Pick another row and 
column.

The answers go in the same location as 
the row and column.
For example, the result of the 1st row 
and 2nd column will go in the 1st row 
2nd column of the answer.

Simplify each 
element.
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1 0 4
−2 3 2

∙
−1
3
5

3.6 MULTIPLY MATRICES

1 ∙ −1 + 0 ∙ 3 + 4 ∙ 5൥ ቉
−2 ∙ −1 + 3 ∙ 3 + 2 ∙ 5

൥ ቉19
21

• Pick a row in the 1st matrix and a 
column in the 2nd matrix. 

• Multiply the first numbers.
• Plus multiply the second numbers.
• Plus multiply the third numbers.

• Pick another row and 
column.

The answers go in the same location as 
the row and column.
For example, the result of the 1st row 
and 1nd column will go in the 1st row 
1nd column of the answer.

Simplify each 
element.
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HOMEWORK QUIZ

• 3.6 Homework Quiz
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3.7 DETERMINANTS AND 
CRAMER'S RULE

Larson Algebra 2
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3.7 DETERMINANTS AND CRAMER'S RULE

• You had to know that all this matrix stuff must have some purpose.  

• Uses of matrices (that we will investigate today)

• Solve systems of equations

• Find the area of a triangle when we only know the coordinates of 
its vertices

57



3.7 DETERMINANTS AND CRAMER'S RULE

• Determinant

• Number associated with square matrices

• Symbolized by det A or | A |  

• Vertical lines mean determinant

• I won’t answer that question on the test for you!
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3.7 DETERMINANTS AND CRAMER'S RULE

• Determinant of 2x2 matrix

• Multiply along the down diagonal and subtract the product of the up 
diagonal.

•
2 −1
3 4

• = 2 4 − 3 −1

• = 8 + 3

• = 11
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3.7 DETERMINANTS AND CRAMER'S RULE

• Determinant of 3x3 Matrix

• Copy the first 2 columns behind the matrix and then add the products of 
the down diagonals and subtract the product of the up diagonals.

•
1 2 3
4 5 6
7 8 9

• = 1 ⋅ 5 ⋅ 9 + 2 ⋅ 6 ⋅ 7 + 3 ⋅ 4 ⋅ 8 − 7 ⋅ 5 ⋅ 3 − 8 ⋅ 6 ⋅ 1 − 9 ⋅ 4 ⋅ 2

• = 45 + 84 + 96 − 105 − 48 − 72

• = 0

1 2
4 5
7 8
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3.7 DETERMINANTS AND CRAMER'S RULE

• Area of a Triangle

𝐴𝑟𝑒𝑎 = ±
1

2

𝑥1 𝑦1 1
𝑥2 𝑦2 1
𝑥3 𝑦3 1

where x’s and y’s are the coordinates of the vertices
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3.7 DETERMINANTS AND CRAMER'S RULE

• Find the area of a triangle with vertices of (2,4), (5,1), and (2,-2)

• 𝐴𝑟𝑒𝑎 = ±
1

2

𝑥1 𝑦1 1
𝑥2 𝑦2 1
𝑥3 𝑦3 1

• 𝐴𝑟𝑒𝑎 = ±
1

2

2 4 1
5 1 1
2 −2 1

• =
1

2
211 + 412 + 15 −2 − 211 − −2 12 − 154

• =
1

2
2 + 8 + −10 − 2 − −4 − 20

• =
1

2
−18 = −9

• Area = 9

2 4
5 1
2 −2
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3.7 DETERMINANTS AND CRAMER'S RULE

• Cramer’s Rule

• Write the equations in standard form

• Make a matrix out of the coefficients

• 2x2

•
𝑎𝑥 + 𝑏𝑦 = 𝑒
𝑐𝑥 + 𝑑𝑦 = 𝑓 gives 𝑥 =

𝑒 𝑏
𝑓 𝑑
𝑎 𝑏
𝑐 𝑑

, 𝑦 =

𝑎 𝑒
𝑐 𝑓
𝑎 𝑏
𝑐 𝑑

Coefficients

x-column replaced 
with constants to 
find x. y-column replaced 

with constants to 
find y

Notice that the numerator and denominator are the same except for the columns 
containing the coefficients of the variable you are solving for is replaced with the 
numbers from the constants column.
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3.7 DETERMINANTS AND CRAMER'S RULE

•
2𝑥 + 1𝑦 = 1
3𝑥 − 2𝑦 = −23

• 𝑥 =

𝑒 𝑏
𝑓 𝑑
𝑎 𝑏
𝑐 𝑑

, 𝑦 =

𝑎 𝑒
𝑐 𝑓
𝑎 𝑏
𝑐 𝑑

• 𝑥 =
1 1

−23 −2
2 1
3 −2

• 𝑥 =
1 −2 − −23 1

2 −2 −3 1

• 𝑥 =
21

−7
= −3

• 𝑦 =
2 1
3 −23
2 1
3 −2

• 𝑦 =
2 −23 −3 1

2 −2 −3 1

• 𝑦 =
−49

−7
= 7

• Solution −3, 7
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3.7 DETERMINANTS AND CRAMER'S RULE

• Cramer’s Rule on a 3x3 System 

• Same as 2x2 system

• The denominator is the determinant of the coefficient matrix and 
the numerator is the same only with the column of the variable 
you are solving for replaced with the = column.
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3.7 DETERMINANTS AND CRAMER'S RULE

•

2𝑥 − 1𝑦 + 6𝑧 = −4
6𝑥 + 4𝑦 − 5𝑧 = −7

−4𝑥 − 2𝑦 + 5𝑧 = 9

• 𝑥 =

−4 −1 6
−7 4 −5
9 −2 5
2 −1 6
6 4 −5
−4 −2 5

• 𝑥 =
−4 4 5 + −1 −5 9 +6 −7 −2 −9 4 6 − −2 −5 −4 −5 −7 −1

2 4 5 + −1 −5 −4 +6 6 −2 − −4 4 6 − −2 −5 2 −5 6 −1

• 𝑥 =
−80+45+84−216− −40 −35

40+ −20 + −72 − −96 −20− −30

• 𝑥 =
−162

54
= −3

−4 −1
−7 4
9 −2
2 −1
6 4
−4 −2
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3.7 DETERMINANTS AND CRAMER'S RULE

•

2𝑥 − 1𝑦 + 6𝑧 = −4
6𝑥 + 4𝑦 − 5𝑧 = −7

−4𝑥 − 2𝑦 + 5𝑧 = 9

• 𝑦 =

2 −4 6
6 −7 −5
−4 9 5
2 −1 6
6 4 −5
−4 −2 5

• 𝑦 =
2 −7 5 + −4 −5 −4 +6 6 9 −(−4) −7 6 − 9 −5 2 −5 6 −4

2 4 5 + −1 −5 −4 +6 6 −2 − −4 4 6 − −2 −5 2 −5 6 −1

• 𝑦 =
−70+(−80)+324−168− −90 −(−120)

40+ −20 + −72 − −96 −20− −30

• 𝑦 =
216

54
= 4

2 −4
6 −7
−4 9
2 −1
6 4
−4 −2
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3.7 DETERMINANTS AND CRAMER'S RULE

•

2𝑥 − 1𝑦 + 6𝑧 = −4
6𝑥 + 4𝑦 − 5𝑧 = −7

−4𝑥 − 2𝑦 + 5𝑧 = 9

• 𝑧 =

2 −1 −4
6 4 −7
−4 −2 9
2 −1 6
6 4 −5
−4 −2 5

• 𝑧 =
2 4 9 + −1 −7 −4 +(−4) 6 −2 −(−4) 4 −4 − −2 −7 2 −9 6 −1

2 4 5 + −1 −5 −4 +6 6 −2 − −4 4 6 − −2 −5 2 −5 6 −1

• 𝑧 =
72+(−28)+48−64−28−(−54)

40+ −20 + −72 − −96 −20− −30

• 𝑧 =
54

54
= 1

2 −1
6 4
−4 −2
2 −1
6 4
−4 −2

The solution is −3,4,1
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HOMEWORK QUIZ

• 3.7 Homework Quiz
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3.8 USE INVERSE MATRICES TO SOLVE LINEAR SYSTEMS

• You can use matrices to solve linear systems in ways different from 
Cramer’s Rule.

• We will learn how, but it requires that we know how to find inverse 
matrices.
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3.8 USE INVERSE MATRICES TO SOLVE LINEAR SYSTEMS

•The identity Matrix multiplied with any matrix of the 
same dimension equals the original matrix.

•A ∙ I = I ∙ A = A

•This is the matrix equivalent of 1

1 0
0 1

1 0 0
0 1 0
0 0 1

1 0 0 ⋯ 0
0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 1

1’s on diagonal, everything else is zero

72



3.8 USE INVERSE MATRICES TO SOLVE LINEAR SYSTEMS

• You cannot divide by a matrix!

• So we multiply by the inverse of a matrix.

• A·A-1 = [1] = I 

• Just like 𝑥 𝑥−1 = 𝑥
1

𝑥
= 1
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3.8 USE INVERSE MATRICES TO SOLVE LINEAR SYSTEMS

• The Rule for 2x2 (Memorize)

• If 𝐴 =
𝑎 𝑏
𝑐 𝑑

• 𝐴−1 =
1

𝑎 𝑏
𝑐 𝑑

𝑑 −𝑏
−𝑐 𝑎
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3.8 USE INVERSE MATRICES TO SOLVE LINEAR SYSTEMS

1 2
3 4

−1

=
1

1 2
3 4

4 −2
−3 1

=
1

1 4 − 3(2)
4 −2
−3 1

=
1

−2
4 −2
−3 1

−2 1
3

2
−
1

2
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3.8 USE INVERSE MATRICES TO SOLVE LINEAR SYSTEMS

−2 −1
4 0

−1

=
1

−2 −1
4 0

0 1
−4 −2

=
1

−2 0 − 4(−1)
0 1
−4 −2

=
1

4
0 1
−4 −2

0
1

4

−1 −
1

2
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3.8 USE INVERSE MATRICES TO SOLVE LINEAR SYSTEMS

• Check by multiplying the two matrices

−2 −1
4 0

⋅
0

1

4

−1 −
1

2

=

−2 0 + −1 −1 −2
1

4
+ −1 −

1

2

4 0 + 0 −1 4
1

4
+ 0 −

1

2

=
1 0
0 1
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3.8 USE INVERSE MATRICES TO SOLVE LINEAR SYSTEMS

• If A, B, and X are matrices, and

• A·X = B

• A-1·A·X = A-1·B

• I·X = A -1·B

• X = A-1·B
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3.8 USE INVERSE MATRICES TO SOLVE LINEAR SYSTEMS

• Solve a matrix equation

• AX = B

•
−3 4
5 −7

𝑋 =
3 8
2 −2

• Continued on next slide

• Find A-1

•
−3 4
5 −7

−1

• =
1

−3 4
5 −7

−7 −4
−5 −3

• =
1

−3 −7 −5 4

−7 −4
−5 −3

• =
1

1

−7 −4
−5 −3

• 𝐴−1 =
−7 −4
−5 −3
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•A-1AX = A-1B

•X = A-1B

𝑋 =
−7 −4
−5 −3

3 8
2 −2

𝑋 =
−7 8 + −4(−2)−7 3 + −4(2)

3.8 USE INVERSE MATRICES TO SOLVE LINEAR SYSTEMS

൥ ቉

𝑋 =
−29 −48
−21 −34

−5 3 + −3(2) −5 8 + −3(−2)

A-1A cancel

80



3.8 USE INVERSE MATRICES TO SOLVE LINEAR SYSTEMS

•
2𝑥 + 𝑦 = −13
𝑥 − 3𝑦 = 11

• Take your equation and write it as matrices (𝐴 ⋅ 𝑋 = 𝐵)

•
2 1
1 −3

𝑥
𝑦 =

−13
11

• Find the coefficient matrix inverse

•
2 1
1 −3

−1

=
1

−7

−3 −1
−1 2
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3.8 USE INVERSE MATRICES TO SOLVE LINEAR SYSTEMS

• Multiply the front of both sides by the inverse (𝐴−1𝐴 ⋅ 𝑋 = 𝐴−1𝐵)

• Left side cancels (𝑋 = 𝐴−1𝐵)

•
𝑥
𝑦 =

1

−7

−3 −1
−1 2

−13
11

• =
1

−7

39 + −11
13 + 22

• =
1

−7

28
35

• =
−4
−5

(-4, -5)
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HOMEWORK QUIZ

• 3.8 Homework Quiz
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